Eight Reasons Why the Future of Personalized Medicine will involve 3D-Printed Pharmaceuticals
While I started talking about 3D pill printers nearly ten years ago, today we are seeing incredible breakthroughs in personalized medicine emerging along two fronts:
- Diagnostic Breakthroughs, for example, with genetic, DNA, and molecular testing to uncover possible health threats, suggest optimal treatment pathways, and determine if further specialized tests are needed.
- Intervention Breakthroughs to customize care to the patient and yield a patient-based rather than a one-size-fits-all disease-based treatment protocol.
One of the most exciting and promising developments on the intervention side is the development of 3D-printed (additive manufacturing) pharmaceuticals. The promise for these products lies not only in the conventional manufacturing process but in the possibility of customizing the drugs in areas like dosage and release timing.
The pharmaceutical industry has come a long way from the days of crudely formulated drugs and doctors who basically guess what dosages are right for their patients.
If a particular pharmaceutical comes in the form of a 200 mg pill, doctors will prescribe 200, 400, or 600 mg doses when the right dose for an individual may be 87 mg, 341 mg, or 496 mg. With 3D printing, doctors can be far more precise.
Also, if the patient doesn’t tolerate an important drug well, doctors will have the option of customizing the pill, so the ingredients are released over an extended period of time.
Where We Stand Now
The U.S. Food & Drug Administration (FDA) has already approved the 3D printing of one drug, Aprecia Pharmaceutical’s Spritam, an anticonvulsant medication used for the treatment of seizures. With that approval, industry leaders see the floodgates opening. As 3D printing technology evolves and production costs come down, any pill or capsule that we swallow is now a candidate for this process and this kind of customization.
The FDA has also given preliminary approval to Eli Lilly to partner with Triastek, a Chinese pharmaceutical additive manufacturing company, to explore delivery mechanisms for two of its new medications. The two companies are investigating printed pill shapes and other excipient (non-medicinal) properties that promote the programmed or timed release of the drug’s active ingredients.
In addition to Aprecia and Eli Lilly, three other drug companies, GlaxoSmithKline, Merck, and FabRx, are also actively pushing into this market.
Globally, the market for 3D-printed drugs is predicted to grow by 15% over the next six years, reaching more than $2 billion by 2027.
We’re on the verge of a 3D-printed pharmaceutical industry where precisely measured doses are easy to create and where multiple drugs in varying doses can be combined into a single pill. Flavors and colors will be customized as well.
Eight Advantages of Printed Pharmaceuticals
Personalized health care is clearly one of the primary benefits of 3D-printed oral medications. But I see at least eight additional reasons this technology will be a game changer.
1. Specialized Drugs
It will enable small-batch printing of specialty drugs for rare or “orphan” diseases, the kind of drugs that pharmaceutical companies tend to sidestep due to low volume and profitability. The technology will also be the ideal way to produce small quantities of drugs for clinical trials in which variable doses need to be tested.
2. Reduced Inventory
Hospitals will be able to print specialized and personalized drugs onsite, reducing the need for stockpiling and providing nearly immediate access to specialty drugs they may not have on hand.
3. Local Production Advantages
In addition to hospitals, pharmacies will be in a position to print prescribed drugs for their customers. The distribution process for many drugs will be shortened as we bypass drug wholesalers for many specialized drugs.
4. Shorter Supply Chain
Locally produced 3D-printed drugs won’t be subject to supply chain constraints. Today, many of our drugs are formulated overseas and then packaged there. That equates to a lot of shipping and quality control steps.
5. Workarounds for Disruptions
If a drug manufacturer needs to temporarily close its facility for any reason, 3D printing can fill the supply gap.
6. Improved Drug Safety
Aspects of drug safety can be improved with local production since there will be less opportunity for counterfeit drugs to be introduced into the distribution process. Costs related to maintaining the required documented pedigree of the drug will be reduced as well.
7. Efficient Use of Raw Materials
3D printing of any item, whether it’s a house, pair of shoes, or a pharmaceutical drug, makes far more efficient use of the raw materials involved. Less waste in drug production means far better use of valuable chemical ingredients.
8. Reduced Cost to End User
Most of these benefits – including the shorter distribution chain, reduced expenses for tracking drug pedigrees, less production waste, and localized production – along with continued advances in 3D printing technology, has the potential to significantly reduce the cost of drugs for the end user.
Barriers We Still Need to Overcome with 3D-Printed Drugs
Even though I just painted a rather promising future for this industry, we’ll still need to resolve certain challenges that will come with widespread 3D drug printing.
-
Bad Actors
As with any technological breakthrough, we’ll need to anticipate how 3D drug printing could be abused by bad actors. The technology will enable drug dealers to manufacture illicit narcotics and it could empower counterfeiters to print fake drugs without active ingredients or with the wrong/dangerous ingredients.
-
Revised Regulatory Processes
We’ll need to revise our drug manufacturing regulatory process, shifting to approving multiple local production sites rather than primary manufacturing plants. The FDA will also need to address matters related to personalized dosing and release profiles. That means regulators will have to focus on additive manufacturing equipment, processes, and quality assurance of the printing ingredients – not a small shift for this large bureaucracy. To their credit, though, the FDA is already working with the National Institute of Standards and Technology to develop guidelines for 3D drug production.
-
Industry Disruptions
The pharmaceutical manufacturing industry will likely raise regulatory and legal barriers to this widespread practice since it threatens the industry’s markups and monopolies. Some will shift to becoming suppliers of chemical ingredients rather than manufacturers of finished pills and capsules.
Over time, we’ll overcome these hurdles so that the benefits of customized, 3D-printed pharmaceuticals will be available for everyone. The FDA will reach a tipping point so that approvals for these processes and products will become more routine while remaining thorough.
And as we add more and more sensors to our bodies, the linkage between personalized diagnostics and personalized pharmacological treatment will become even closer and … well… even more personalized.
Eight Reasons Why the Future of Personalized Medicine will involve 3D-Printed Pharmaceuticals
Built in 1954, the Canyon Ferry Dam has stood as an engineering marvel, powering over 100,000 homes.
Modern civilization is built on precision, innovation, and control—but when one failure occurs in an interconnected system, the consequences can be unstoppable. The Canyon Ferry Disaster is more than a catastrophe; it is a cautionary tale of how a single breach can unravel decades of progress, setting off a chain reaction of destruction that no one can stop.
What began as a fracture in one dam quickly escalated into the largest infrastructure collapse in American history. One after another, dams crumbled, rivers swelled beyond control, and cities vanished beneath an unrelenting flood. The Missouri River, once a lifeline for millions, became a weapon of mass destruction, leaving entire states submerged and the nation in chaos.
This is not just the story of a disaster—it is the story of how fragile our modern world truly is. This account will trace the slow-motion nightmare that unfolded over twelve days, the desperate evacuations, and the lessons we must learn to ensure this never happens again. Because if history has taught us anything, it is this: when the first dam breaks, the clock starts ticking.
1. Setting the Stage: A Calm Before the Chaos
The Missouri River glides silently beneath the warm glow of an early spring sunset, its surface undisturbed, almost tranquil. The vast Canyon Ferry Reservoir stretches to the horizon, a colossal body of water swollen to its limits by the seasonal snowmelt. Beneath its smooth facade, 134 billion cubic feet of water press against the towering Canyon Ferry Dam, a monolith of stone and steel standing guard over Montana’s rugged landscape.
Built in 1954, the dam is more than just an engineering marvel—it is a lifeline. Its hydroelectric turbines provide power to over 100,000 homes, its waters irrigate thousands of acres of farmland, and its reservoir draws boaters, anglers, and campers seeking escape into Montana’s wilderness. At 210 feet high and 3,280 feet long, it is a sentinel of progress, a testament to mankind’s ability to tame nature’s fury.
But below the surface, unseen and unforgiving forces are at play.
Downstream, the Missouri River winds its way through a chain of dams, each a critical link in the region’s infrastructure. The Hauser Dam, just 14 miles away, holds 5 billion cubic feet of water in check. Farther down, 30 miles from Canyon Ferry, the Holter Dam contains another 12 billion cubic feet. Together, these structures balance power and control, protecting Helena, Great Falls, and dozens of smaller communities nestled along the riverbanks.
Beyond them, the Missouri River Basin sprawls across the heartland, home to over 2.5 million people who depend on its waters for drinking, industry, and agriculture. While only a fraction of them live within the immediate floodplain, a catastrophic failure here would send shockwaves across the Midwest, disrupting power grids, supply chains, and entire economies.
Yet, on this serene evening, there are no warnings, no sirens—only a quiet, uneasy stillness. A handful of anglers cast their lines into the glassy waters, unaware that history is about to change.
Because at this very moment, a plan is in motion. A deliberate act of destruction has been set into place—one designed to exploit the river at its most vulnerable. The conspirators know the stakes. They understand the chain reaction that a single breach will unleash. And they know that within hours, this calm reservoir will become an unstoppable force of devastation.
For now, the only sounds are the splash of fish breaking the surface and the soft rustling of wind through the pines. The Canyon Ferry Dam stands, silent and unyielding.
But not for long.

The Canyon Ferry Reservoir has long been a hidden gem tucked into the mountains of Montana.
2. The Prelude to Destruction
Dressed in unremarkable fishing gear, two men unload a motorized raft on the quiet eastern edge of the Canyon Ferry Reservoir. To an untrained observer, they appear to be ordinary fishermen, blending seamlessly into the tranquil surroundings. But their actions—subtle, deliberate—betray their true intent. Weighted backpacks filled with explosives, carefully constructed to withstand the pressure and turbulence of deep water, are lowered into the raft. The payload, consisting of seven interconnected explosive packs, is designed to deliver a synchronized detonation capable of breaching even the most robust dam structures.
The dam's spillway—its Achilles' heel—is their target. The Canyon Ferry Dam, holding back 134 billion cubic feet of water, stands as a critical point in the Missouri River’s intricate hydrological system. A breach here would unleash catastrophic downstream consequences. The Hauser Dam, 14 miles downstream and containing 5 billion cubic feet of water, would likely fail within hours. Holter Dam, located 30 miles from Canyon Ferry and holding 12 billion cubic feet, would inevitably collapse under the combined pressure. Together, these three dams control the flow of water through a basin that directly supports over 300,000 residents in Montana while indirectly impacting millions across the Midwest.
Under the cover of nightfall, the perpetrators navigate their raft with care, steering away from any prying eyes or patrol boats. The reservoir, spanning 10 miles, offers them plenty of space to operate in relative isolation. As they approach the dam’s spillway—a point they meticulously identified as the structural weak spot—they move with precision.
Their explosives are tethered along a cable designed to span the height of the dam’s foundation. Each pack is carefully positioned at calculated depths to maximize the impact of the detonation, ensuring that the initial blast will penetrate the earth and concrete barrier holding back the massive reservoir. The tether is anchored securely to the spillway wall, and the waterproof timers are activated. The countdown begins, set to deliver devastation at precisely 12:02 a.m.
The two men work in silence, their practiced efficiency reflecting months of planning. They know the stakes: a breach at Canyon Ferry will initiate a chain reaction, leading to the catastrophic failure of dams further downstream. As they finish their task, the duo vanishes into the surrounding wilderness, leaving no trace of their presence.
This single act sets the stage for a disaster that will reshape the lives of millions. Helena, the state capital located 23 miles from Canyon Ferry, is home to over 30,000 residents who rely on the dam for water, power, and flood control. Beyond Helena, the floodwaters will race toward Great Falls, a city of 58,000, and eventually to the broader Midwest, where the economic and human toll will be felt by millions.
By midnight, the tranquility of the Montana night will give way to an engineered catastrophe as the first moments of destruction begin to unfold.

At precisely 12:02 am, the stillness of the Montana night is shattered.
3.) The Midnight Call: Emergency Crews Mobilize
At precisely 12:02 a.m., the stillness of the Montana night is shattered. A deep, concussive explosion rips through the base of Canyon Ferry Dam, sending shockwaves through the massive concrete structure. The once-unyielding wall of reinforced concrete and earth buckles, and within seconds, a catastrophic breach opens.
The reservoir, swollen with 134 billion cubic feet of water, unleashes its fury, carving a violent new channel through the canyon walls. A roaring, frothing wave surges downstream at over 30 mph, erasing roads, bridges, and homes in its path.
The Midnight Alarm: Emergency Crews Awaken
Within minutes of the explosion, emergency dispatch centers across Montana light up with frantic calls.
- Montana Highway Patrol officers jolt awake to the shrill ring of their radios, orders crackling through the speakers:
“Evacuate all communities along the Missouri River. The dam is gone.” - Firehouses scramble to respond, their crews grabbing gear in a blur of movement as sirens scream through sleeping towns.
- National Guard units, roused from their beds, are ordered to immediate deployment, their convoys speeding toward the rising disaster.
The news spreads in waves of disbelief and urgency.
- Dispatchers struggle to relay information, overwhelmed by a flood of 911 calls from terrified residents.
- Mayors and emergency coordinators in Helena, Great Falls, and beyond are jolted awake by emergency briefings—what they hear defies belief.
- Hospitals activate mass casualty protocols, clearing emergency rooms for an influx of injured evacuees.
As the first reports filter in—Canyon Ferry is gone, Hauser is failing, Holter is next—one thing becomes clear: this is no localized disaster. This is a national catastrophe in motion.
The First Domino: Hauser and Holter Collapse
By 12:30 a.m., emergency responders in Townsend, East Helena, and Helena are already in the streets, pounding on doors, screaming at people to evacuate. But the flood moves faster than they can warn.
- The Hauser Dam, just 14 miles downstream, is overwhelmed within 45 minutes. The 5 billion cubic feet of water behind it surges free, adding fuel to the already unstoppable wave.
- By 2:00 a.m., Holter Dam (holding 12 billion cubic feet) collapses, its concrete walls buckling under the relentless force.
The Missouri River has now doubled in volume, multiplying its destructive power with each collapse.
A Night of Chaos: Emergency Crews Race Against Time
With every hour that passes, the flood picks up speed, debris, and lives.
- State troopers in helicopters broadcast evacuation orders over loudspeakers, their voices barely audible over the roaring flood.
- Firefighters and medics stage along higher ground, awaiting the injured—but knowing their numbers will quickly overwhelm resources.
- National Guard engineers race to reinforce bridges and levees, but it’s already too late for many.
The entire state of Montana is now in a state of emergency.
Great Falls: The Next City in Line
Located 75 miles downstream, Great Falls (population 58,000) braces for the inevitable. The Missouri River is now a runaway force of destruction, fed by three dam failures.
- At 4:30 a.m., city sirens wail, warning of the incoming wall of water.
- Military helicopters circle above, lighting up the darkness with searchlights as they pull stranded residents from rooftops.
- Highway patrol officers form human chains, dragging people from stalled vehicles on submerged highways.
The Missouri River is no longer a river—it is a weapon, carrying the flood toward even more densely populated regions.
Dawn Brings a Grim Reality
By 6:00 a.m., the rising sun reveals a transformed landscape. The waters now stretch for miles beyond the riverbanks, swallowing entire towns like an advancing ocean.
- Over 500,000 residents across the Missouri River Basin are without power, clean water, or escape routes.
- Railroads, highways, and supply chains are severed, cutting off vital aid to affected areas.
- Rescue crews, exhausted and overwhelmed, begin marking buildings with spray paint, signaling where survivors have been found—and where bodies remain.
The nation wakes up to the biggest disaster in modern American history—and it is only just beginning.

Over the coming days, over 300 bridges will be destroyed!.
4. The Domino Effect: From Montana to the Midwest
The Cascading Failure of Missouri River Dams
As the breach at Canyon Ferry Dam unleashes 134 billion cubic feet of water, a deadly chain reaction begins, overwhelming the Missouri River’s system of dams and reservoirs. The surging flood quickly overcomes the Hauser Dam (14 miles downstream, holding 5 billion cubic feet) and then slams into the Holter Dam (another 15 miles downstream, containing 12 billion cubic feet). Each failure amplifies the flood’s destructive force, accelerating its deadly march across Montana.
Yet, this is just the beginning. The water, now a roaring deluge of over 150 billion cubic feet, is propelled downstream by the Missouri River’s rapid elevation drop—a geographical feature that turns a disaster into a catastrophe.
From Canyon Ferry to Fort Peck Dam, the Missouri River plunges more than 1,000 feet in elevation over a 300-mile stretch. This steep decline transforms the flood into a fast-moving torrent, exponentially increasing its power. The river, normally controlled by a series of hydroelectric projects, is now an unchecked, relentless force.
The Final Stand: Fort Peck Dam
Located nearly 300 miles northeast of Canyon Ferry, Fort Peck Dam is the largest dam on the Missouri River and one of the most massive earthen dams in the world. Completed in 1940, it stands 250 feet high and 21,026 feet long, forming the Fort Peck Reservoir, which stretches 134 miles and holds an astonishing 19 million acre-feet (825 billion cubic feet) of water. This dam plays a critical role in regulating the Missouri River’s flow and preventing catastrophic floods.
But as the floodstorm barrels toward Fort Peck, engineers at the dam realize the terrifying reality: the dam’s current outflow system cannot release water fast enough to compensate for the incoming surge. Fort Peck is already at near-capacity from spring runoff, and with the combined floodwaters from Canyon Ferry, Hauser, and Holter, the reservoir’s levels begin to rise at a staggering rate.
At 10:45 a.m., the reservoir has exceeded emergency spillway levels. The earthen dam, never designed to withstand such an overwhelming surge, starts showing signs of structural failure. Engineers scramble to increase controlled releases, but it’s futile.
By 11:12 a.m., a massive section of Fort Peck’s earthen embankment gives way. Within minutes, the entire eastern section collapses, sending a 150-foot-high wall of water racing downstream at over 30 mph.
The Cataclysm Unleashed
With Fort Peck’s 825 billion cubic feet of water now joining the flood, the torrent has become an unstoppable inland tsunami, moving relentlessly toward Garrison Dam in North Dakota. The elevation drop between Fort Peck and Garrison spans over 300 feet, adding even more momentum to the water’s deadly charge.
By 3:30 p.m., the Garrison Dam, one of the largest hydroelectric facilities in the U.S., collapses under the onslaught. This final breach sends a surge of over 2.5 trillion cubic feet of water cascading down the Missouri River, obliterating towns, cities, and infrastructure across Montana, North Dakota, South Dakota, and the Midwest.

While most people have been warned to evacuate, the destruction of property is unfathomable.
5.) The Slow March of Disaster: A Nation Watches in Horror
By daylight, the unstoppable wall of water has already consumed much of Montana and North Dakota, and now it creeps—agonizingly slow yet inescapable—toward the heart of the Midwest. The disaster does not strike all at once. Instead, it unfolds in slow motion, a grinding inevitability that emergency crews and news helicopters track in real time, broadcasting the destruction hour by hour to a stunned nation.
Bismarck Overwhelmed: The Water Rises, and Hope Fades
From the air, Bismarck looks like a city under siege by nature itself. The once-mighty Missouri River has swollen to five times its normal width, and levees that held through the night are now visibly bulging, crumbling, then failing altogether.
Helicopters hover over the stranded residents, capturing footage of entire neighborhoods gradually vanishing beneath the encroaching flood. The footage is surreal—people wading through waist-deep water, clutching their children and whatever belongings they can carry.
On the ground, emergency responders battle exhaustion as they ferry stranded families to safety in boats. Some neighborhoods are completely cut off, leaving rescue crews to make impossible choices about who to evacuate first.
- Bismarck’s flood stage is typically 16 feet, but by noon, the water has risen past 35 feet—and it keeps climbing.
- Highway 83, the last major evacuation route, is swallowed in slow motion.
- National Guard troops coordinate rooftop rescues while power stations spark and fail.
The collapse of Garrison Dam upstream means that Bismarck’s fate is sealed—the city will not be spared. Residents flee to higher ground, watching their homes become part of the ever-widening floodplain.
Oahe Dam Teeters on the Brink: The Clock Runs Out
Further downstream, Pierre, South Dakota, waits in agonizing silence. Residents have been watching the rising water for days, knowing the Oahe Dam stands between them and annihilation.
Live news feeds capture the moment the colossal structure gives way. At 9:40 a.m., an earthen section of the dam cracks, buckles, then collapses. The dam’s 102 billion cubic feet of water explode outward, sending a new tidal wave racing toward South Dakota’s capital.
From above, helicopters capture the moment the surge hits downtown Pierre. Streets become rivers, cars float like toys, and entire buildings dislodge and drift away. The bridge spanning the Missouri River collapses, cutting off all hope of escape for those still trapped on the wrong side.
- Pierre’s population of 14,000 has less than 30 minutes before the entire city is underwater.
- The flood, now carrying the force of three dam failures, picks up even more speed as it descends into South Dakota.
- Livestock in nearby fields struggle in the churning water, helpless as their pastures become part of the widening disaster.
Sioux City: The Evacuation Race Against Time
As the water thunders southward, Sioux City, Iowa, watches and waits, its people glued to live updates of Pierre’s destruction. They know they are next.
The city’s levees, reinforced only hours earlier, are now visibly weakening. Military convoys rush thousands toward higher ground, but the roads are choked with traffic, a slow-moving panic.
By mid-afternoon, the inevitable happens—the Missouri River breaks through. The flood arrives not as a single towering wave, but as a relentless surge, rising inch by inch until the entire city is drowning.
- Families abandon vehicles on flooded highways, scrambling for higher overpasses.
- Shelters overflow as tens of thousands are displaced.
- A power station explodes in a shower of sparks, plunging half the city into darkness.
Final Thoughts - A Pill for Humanity’s Future
The Canyon Ferry Disaster is more than a tragedy—it is a warning. A single point of failure unraveled the entire Missouri River Basin, leaving millions displaced and the heartland in ruins. The disaster underscores the fragility of our systems and the urgent need for innovation, resilience, and vigilance.
As communities embark on the long road to recovery, one truth is clear: we must redesign our world to prevent such catastrophic chain reactions from ever happening again. The lessons of this tragedy must shape the future, ensuring that our civilization does not crumble under the weight of its own complexity.