On the Road to Greener Concrete
It’s rare that the opportunity to preserve resources, recycle resources, enhance quality, and improve cost efficiency all come together to deliver an important, improved product that the world uses in abundance every day.
We live on a finite planet with a finite atmosphere, and we have a finite quantity of resources at our disposal. At certain points in history, our human capabilities scale past the point of reason, where our busy work begins to take an excessive toll on planet Earth.
That’s exactly what’s happening in the concrete industry. But there’s a very good story is percolating to the top of the construction world.
Traditional concrete, the building material made from a geopolymer known as Portland cement, isn’t glamorous. It’s not high-tech. It’s not taking us to space. It’s not forming the metaverse – it’s quite the opposite of the metaverse, in fact! Instead, concrete is literally providing the foundation for our real world and for virtually every finished, hardened structure we need to build – our roads, buildings, bridges, and more.
Contrary to popular belief, Portland cement doesn’t owe its name to the beautiful port city in Oregon. Two hundred years ago, the inventor of an earlier version of the material named it after Portland stone, a similar-looking product that was quarried on the Isle of Portland in England.
Today’s concrete has evolved over the years to include lime/clay cement combined with aggregates like clay, shale, sand, iron ore, bauxite, fly ash, and/or slag. Concrete, in the end, is essential that Portland aggregate cement product + water + sand + gravel … all natural resources.
As of 2021, 4.4 billion tons of concrete were produced worldwide, and that number is projected to increase by 25% by 2050.
Researchers are perfecting a variety of eco-friendly, green concrete alternatives made from unique combinations of geopolymer cement components. What makes the resulting concrete “green” compared to traditional concrete products is the fact that each, to one degree or another in the manufacturing process:
1. Uses recyclable material
2. Utilizes a less energy-intensive manufacturing process
3. Generates a lower amount of carbon dioxide (CO2) and wastewater
In addition to those benefits, many varieties of green concrete are proving to be more durable, stronger, and less expensive. They can also be set up quicker with less shrinkage.
All of these are positive attributes, so what’s not to love?
A Better Recipe of Raw Materials
Natural sand is a critical material used in traditional concrete. Natural sand, though, is a limited resource, and it’s also used in the fracking process. This material is mined from open pits, inland dunes, river beds, and other geologically fragile environments. There’s a similar story with gravel, which is another aggregate and another critical component of Portland cement-based concrete.
In contrast, many varieties of geopolymers that make up green concrete use natural fibers and industrial waste products like waste glass sand, fly ash from coal-fired power plants, and blast furnace slag, a by-product of iron and steel production.
Additional research is being done on integrating aggregate from demolition waste and other recycled concrete, forming a closed loop for this important construction material.
A Better Use of Our Energy Resources
At the risk of getting into the weeds and dredging up more detail than you ever wanted to know, green concrete also reduces energy consumption.
First of all, sand mining is very energy-intensive, and any reduction in that activity is a big step in the right direction. Second, the heating process for making traditional Portland cement requires massive amounts of energy. But formulating green cement with fly ash, for example, reduces that significantly.
Reducing Greenhouse Gases
Due to its chemical processes, Portland cement manufacturing accounts for 7% of the global release of CO2, according to the International Energy Agency. If the concrete industry were a country, it would be the third-largest CO2 emitter, right behind the U.S. and China.
Alternatively, green geopolymer cement production can reduce this by 90%. That’s pretty stark, not to mention compelling.
Making A Better Cement Product
As a result, these new green processes and formulations are not only making concrete in a better way, they’re making concrete better.
- Using natural fibers like hemp or bamboo for reinforcement instead of synthetic or steel fibers is not only cheaper but also adds tensile strength and reduces corrosion.
- Lead slag is proving to be an ideal additive to green concrete to reduce drying shrinkage.
- Green concrete containing waste glass sand (as opposed to natural sand) has been shown to be stronger and less porous than other varieties.
- Finally, thanks to many of the features mentioned above, green concrete promises to be less expensive than traditional Portland cement-based concrete.
The next step for this technology is to incorporate it into 3D-printed buildings and other structures, reducing waste during construction. It’s too early to say if construction will ever be considered a “green industry,” but it’s definitely taking major steps in that direction.
Focusing on the Positive
This is one of the best good-news stories I’ve had a chance to talk about in a long time. Futurists tend to spend a lot of time exploring new frontiers and breakthrough industries and less time exploring the implications of advances in current practices that can be just as or even more impactful in the long run.
And too many observers and pundits tend to focus on the seemingly insurmountable challenges all around us instead of rolling up their sleeves and picking away at today’s problems.
The emergence of green concrete demonstrates that doing the right thing from a sustainability perspective doesn’t mean we have to compromise the quality of life or, in this case, the quality of building.
We need more of these kinds of breakthroughs and more researchers working in big areas like this to help ensure our world is on the best possible trajectory into the future.
On the Road to Greener Concrete
Built in 1954, the Canyon Ferry Dam has stood as an engineering marvel, powering over 100,000 homes.
Modern civilization is built on precision, innovation, and control—but when one failure occurs in an interconnected system, the consequences can be unstoppable. The Canyon Ferry Disaster is more than a catastrophe; it is a cautionary tale of how a single breach can unravel decades of progress, setting off a chain reaction of destruction that no one can stop.
What began as a fracture in one dam quickly escalated into the largest infrastructure collapse in American history. One after another, dams crumbled, rivers swelled beyond control, and cities vanished beneath an unrelenting flood. The Missouri River, once a lifeline for millions, became a weapon of mass destruction, leaving entire states submerged and the nation in chaos.
This is not just the story of a disaster—it is the story of how fragile our modern world truly is. This account will trace the slow-motion nightmare that unfolded over twelve days, the desperate evacuations, and the lessons we must learn to ensure this never happens again. Because if history has taught us anything, it is this: when the first dam breaks, the clock starts ticking.
1. Setting the Stage: A Calm Before the Chaos
The Missouri River glides silently beneath the warm glow of an early spring sunset, its surface undisturbed, almost tranquil. The vast Canyon Ferry Reservoir stretches to the horizon, a colossal body of water swollen to its limits by the seasonal snowmelt. Beneath its smooth facade, 134 billion cubic feet of water press against the towering Canyon Ferry Dam, a monolith of stone and steel standing guard over Montana’s rugged landscape.
Built in 1954, the dam is more than just an engineering marvel—it is a lifeline. Its hydroelectric turbines provide power to over 100,000 homes, its waters irrigate thousands of acres of farmland, and its reservoir draws boaters, anglers, and campers seeking escape into Montana’s wilderness. At 210 feet high and 3,280 feet long, it is a sentinel of progress, a testament to mankind’s ability to tame nature’s fury.
But below the surface, unseen and unforgiving forces are at play.
Downstream, the Missouri River winds its way through a chain of dams, each a critical link in the region’s infrastructure. The Hauser Dam, just 14 miles away, holds 5 billion cubic feet of water in check. Farther down, 30 miles from Canyon Ferry, the Holter Dam contains another 12 billion cubic feet. Together, these structures balance power and control, protecting Helena, Great Falls, and dozens of smaller communities nestled along the riverbanks.
Beyond them, the Missouri River Basin sprawls across the heartland, home to over 2.5 million people who depend on its waters for drinking, industry, and agriculture. While only a fraction of them live within the immediate floodplain, a catastrophic failure here would send shockwaves across the Midwest, disrupting power grids, supply chains, and entire economies.
Yet, on this serene evening, there are no warnings, no sirens—only a quiet, uneasy stillness. A handful of anglers cast their lines into the glassy waters, unaware that history is about to change.
Because at this very moment, a plan is in motion. A deliberate act of destruction has been set into place—one designed to exploit the river at its most vulnerable. The conspirators know the stakes. They understand the chain reaction that a single breach will unleash. And they know that within hours, this calm reservoir will become an unstoppable force of devastation.
For now, the only sounds are the splash of fish breaking the surface and the soft rustling of wind through the pines. The Canyon Ferry Dam stands, silent and unyielding.
But not for long.

The Canyon Ferry Reservoir has long been a hidden gem tucked into the mountains of Montana.
2. The Prelude to Destruction
Dressed in unremarkable fishing gear, two men unload a motorized raft on the quiet eastern edge of the Canyon Ferry Reservoir. To an untrained observer, they appear to be ordinary fishermen, blending seamlessly into the tranquil surroundings. But their actions—subtle, deliberate—betray their true intent. Weighted backpacks filled with explosives, carefully constructed to withstand the pressure and turbulence of deep water, are lowered into the raft. The payload, consisting of seven interconnected explosive packs, is designed to deliver a synchronized detonation capable of breaching even the most robust dam structures.
The dam's spillway—its Achilles' heel—is their target. The Canyon Ferry Dam, holding back 134 billion cubic feet of water, stands as a critical point in the Missouri River’s intricate hydrological system. A breach here would unleash catastrophic downstream consequences. The Hauser Dam, 14 miles downstream and containing 5 billion cubic feet of water, would likely fail within hours. Holter Dam, located 30 miles from Canyon Ferry and holding 12 billion cubic feet, would inevitably collapse under the combined pressure. Together, these three dams control the flow of water through a basin that directly supports over 300,000 residents in Montana while indirectly impacting millions across the Midwest.
Under the cover of nightfall, the perpetrators navigate their raft with care, steering away from any prying eyes or patrol boats. The reservoir, spanning 10 miles, offers them plenty of space to operate in relative isolation. As they approach the dam’s spillway—a point they meticulously identified as the structural weak spot—they move with precision.
Their explosives are tethered along a cable designed to span the height of the dam’s foundation. Each pack is carefully positioned at calculated depths to maximize the impact of the detonation, ensuring that the initial blast will penetrate the earth and concrete barrier holding back the massive reservoir. The tether is anchored securely to the spillway wall, and the waterproof timers are activated. The countdown begins, set to deliver devastation at precisely 12:02 a.m.
The two men work in silence, their practiced efficiency reflecting months of planning. They know the stakes: a breach at Canyon Ferry will initiate a chain reaction, leading to the catastrophic failure of dams further downstream. As they finish their task, the duo vanishes into the surrounding wilderness, leaving no trace of their presence.
This single act sets the stage for a disaster that will reshape the lives of millions. Helena, the state capital located 23 miles from Canyon Ferry, is home to over 30,000 residents who rely on the dam for water, power, and flood control. Beyond Helena, the floodwaters will race toward Great Falls, a city of 58,000, and eventually to the broader Midwest, where the economic and human toll will be felt by millions.
By midnight, the tranquility of the Montana night will give way to an engineered catastrophe as the first moments of destruction begin to unfold.

At precisely 12:02 am, the stillness of the Montana night is shattered.
3.) The Midnight Call: Emergency Crews Mobilize
At precisely 12:02 a.m., the stillness of the Montana night is shattered. A deep, concussive explosion rips through the base of Canyon Ferry Dam, sending shockwaves through the massive concrete structure. The once-unyielding wall of reinforced concrete and earth buckles, and within seconds, a catastrophic breach opens.
The reservoir, swollen with 134 billion cubic feet of water, unleashes its fury, carving a violent new channel through the canyon walls. A roaring, frothing wave surges downstream at over 30 mph, erasing roads, bridges, and homes in its path.
The Midnight Alarm: Emergency Crews Awaken
Within minutes of the explosion, emergency dispatch centers across Montana light up with frantic calls.
- Montana Highway Patrol officers jolt awake to the shrill ring of their radios, orders crackling through the speakers:
“Evacuate all communities along the Missouri River. The dam is gone.” - Firehouses scramble to respond, their crews grabbing gear in a blur of movement as sirens scream through sleeping towns.
- National Guard units, roused from their beds, are ordered to immediate deployment, their convoys speeding toward the rising disaster.
The news spreads in waves of disbelief and urgency.
- Dispatchers struggle to relay information, overwhelmed by a flood of 911 calls from terrified residents.
- Mayors and emergency coordinators in Helena, Great Falls, and beyond are jolted awake by emergency briefings—what they hear defies belief.
- Hospitals activate mass casualty protocols, clearing emergency rooms for an influx of injured evacuees.
As the first reports filter in—Canyon Ferry is gone, Hauser is failing, Holter is next—one thing becomes clear: this is no localized disaster. This is a national catastrophe in motion.
The First Domino: Hauser and Holter Collapse
By 12:30 a.m., emergency responders in Townsend, East Helena, and Helena are already in the streets, pounding on doors, screaming at people to evacuate. But the flood moves faster than they can warn.
- The Hauser Dam, just 14 miles downstream, is overwhelmed within 45 minutes. The 5 billion cubic feet of water behind it surges free, adding fuel to the already unstoppable wave.
- By 2:00 a.m., Holter Dam (holding 12 billion cubic feet) collapses, its concrete walls buckling under the relentless force.
The Missouri River has now doubled in volume, multiplying its destructive power with each collapse.
A Night of Chaos: Emergency Crews Race Against Time
With every hour that passes, the flood picks up speed, debris, and lives.
- State troopers in helicopters broadcast evacuation orders over loudspeakers, their voices barely audible over the roaring flood.
- Firefighters and medics stage along higher ground, awaiting the injured—but knowing their numbers will quickly overwhelm resources.
- National Guard engineers race to reinforce bridges and levees, but it’s already too late for many.
The entire state of Montana is now in a state of emergency.
Great Falls: The Next City in Line
Located 75 miles downstream, Great Falls (population 58,000) braces for the inevitable. The Missouri River is now a runaway force of destruction, fed by three dam failures.
- At 4:30 a.m., city sirens wail, warning of the incoming wall of water.
- Military helicopters circle above, lighting up the darkness with searchlights as they pull stranded residents from rooftops.
- Highway patrol officers form human chains, dragging people from stalled vehicles on submerged highways.
The Missouri River is no longer a river—it is a weapon, carrying the flood toward even more densely populated regions.
Dawn Brings a Grim Reality
By 6:00 a.m., the rising sun reveals a transformed landscape. The waters now stretch for miles beyond the riverbanks, swallowing entire towns like an advancing ocean.
- Over 500,000 residents across the Missouri River Basin are without power, clean water, or escape routes.
- Railroads, highways, and supply chains are severed, cutting off vital aid to affected areas.
- Rescue crews, exhausted and overwhelmed, begin marking buildings with spray paint, signaling where survivors have been found—and where bodies remain.
The nation wakes up to the biggest disaster in modern American history—and it is only just beginning.

Over the coming days, over 300 bridges will be destroyed!.
4. The Domino Effect: From Montana to the Midwest
The Cascading Failure of Missouri River Dams
As the breach at Canyon Ferry Dam unleashes 134 billion cubic feet of water, a deadly chain reaction begins, overwhelming the Missouri River’s system of dams and reservoirs. The surging flood quickly overcomes the Hauser Dam (14 miles downstream, holding 5 billion cubic feet) and then slams into the Holter Dam (another 15 miles downstream, containing 12 billion cubic feet). Each failure amplifies the flood’s destructive force, accelerating its deadly march across Montana.
Yet, this is just the beginning. The water, now a roaring deluge of over 150 billion cubic feet, is propelled downstream by the Missouri River’s rapid elevation drop—a geographical feature that turns a disaster into a catastrophe.
From Canyon Ferry to Fort Peck Dam, the Missouri River plunges more than 1,000 feet in elevation over a 300-mile stretch. This steep decline transforms the flood into a fast-moving torrent, exponentially increasing its power. The river, normally controlled by a series of hydroelectric projects, is now an unchecked, relentless force.
The Final Stand: Fort Peck Dam
Located nearly 300 miles northeast of Canyon Ferry, Fort Peck Dam is the largest dam on the Missouri River and one of the most massive earthen dams in the world. Completed in 1940, it stands 250 feet high and 21,026 feet long, forming the Fort Peck Reservoir, which stretches 134 miles and holds an astonishing 19 million acre-feet (825 billion cubic feet) of water. This dam plays a critical role in regulating the Missouri River’s flow and preventing catastrophic floods.
But as the floodstorm barrels toward Fort Peck, engineers at the dam realize the terrifying reality: the dam’s current outflow system cannot release water fast enough to compensate for the incoming surge. Fort Peck is already at near-capacity from spring runoff, and with the combined floodwaters from Canyon Ferry, Hauser, and Holter, the reservoir’s levels begin to rise at a staggering rate.
At 10:45 a.m., the reservoir has exceeded emergency spillway levels. The earthen dam, never designed to withstand such an overwhelming surge, starts showing signs of structural failure. Engineers scramble to increase controlled releases, but it’s futile.
By 11:12 a.m., a massive section of Fort Peck’s earthen embankment gives way. Within minutes, the entire eastern section collapses, sending a 150-foot-high wall of water racing downstream at over 30 mph.
The Cataclysm Unleashed
With Fort Peck’s 825 billion cubic feet of water now joining the flood, the torrent has become an unstoppable inland tsunami, moving relentlessly toward Garrison Dam in North Dakota. The elevation drop between Fort Peck and Garrison spans over 300 feet, adding even more momentum to the water’s deadly charge.
By 3:30 p.m., the Garrison Dam, one of the largest hydroelectric facilities in the U.S., collapses under the onslaught. This final breach sends a surge of over 2.5 trillion cubic feet of water cascading down the Missouri River, obliterating towns, cities, and infrastructure across Montana, North Dakota, South Dakota, and the Midwest.

While most people have been warned to evacuate, the destruction of property is unfathomable.
5.) The Slow March of Disaster: A Nation Watches in Horror
By daylight, the unstoppable wall of water has already consumed much of Montana and North Dakota, and now it creeps—agonizingly slow yet inescapable—toward the heart of the Midwest. The disaster does not strike all at once. Instead, it unfolds in slow motion, a grinding inevitability that emergency crews and news helicopters track in real time, broadcasting the destruction hour by hour to a stunned nation.
Bismarck Overwhelmed: The Water Rises, and Hope Fades
From the air, Bismarck looks like a city under siege by nature itself. The once-mighty Missouri River has swollen to five times its normal width, and levees that held through the night are now visibly bulging, crumbling, then failing altogether.
Helicopters hover over the stranded residents, capturing footage of entire neighborhoods gradually vanishing beneath the encroaching flood. The footage is surreal—people wading through waist-deep water, clutching their children and whatever belongings they can carry.
On the ground, emergency responders battle exhaustion as they ferry stranded families to safety in boats. Some neighborhoods are completely cut off, leaving rescue crews to make impossible choices about who to evacuate first.
- Bismarck’s flood stage is typically 16 feet, but by noon, the water has risen past 35 feet—and it keeps climbing.
- Highway 83, the last major evacuation route, is swallowed in slow motion.
- National Guard troops coordinate rooftop rescues while power stations spark and fail.
The collapse of Garrison Dam upstream means that Bismarck’s fate is sealed—the city will not be spared. Residents flee to higher ground, watching their homes become part of the ever-widening floodplain.
Oahe Dam Teeters on the Brink: The Clock Runs Out
Further downstream, Pierre, South Dakota, waits in agonizing silence. Residents have been watching the rising water for days, knowing the Oahe Dam stands between them and annihilation.
Live news feeds capture the moment the colossal structure gives way. At 9:40 a.m., an earthen section of the dam cracks, buckles, then collapses. The dam’s 102 billion cubic feet of water explode outward, sending a new tidal wave racing toward South Dakota’s capital.
From above, helicopters capture the moment the surge hits downtown Pierre. Streets become rivers, cars float like toys, and entire buildings dislodge and drift away. The bridge spanning the Missouri River collapses, cutting off all hope of escape for those still trapped on the wrong side.
- Pierre’s population of 14,000 has less than 30 minutes before the entire city is underwater.
- The flood, now carrying the force of three dam failures, picks up even more speed as it descends into South Dakota.
- Livestock in nearby fields struggle in the churning water, helpless as their pastures become part of the widening disaster.
Sioux City: The Evacuation Race Against Time
As the water thunders southward, Sioux City, Iowa, watches and waits, its people glued to live updates of Pierre’s destruction. They know they are next.
The city’s levees, reinforced only hours earlier, are now visibly weakening. Military convoys rush thousands toward higher ground, but the roads are choked with traffic, a slow-moving panic.
By mid-afternoon, the inevitable happens—the Missouri River breaks through. The flood arrives not as a single towering wave, but as a relentless surge, rising inch by inch until the entire city is drowning.
- Families abandon vehicles on flooded highways, scrambling for higher overpasses.
- Shelters overflow as tens of thousands are displaced.
- A power station explodes in a shower of sparks, plunging half the city into darkness.
Final Thoughts - A Pill for Humanity’s Future
The Canyon Ferry Disaster is more than a tragedy—it is a warning. A single point of failure unraveled the entire Missouri River Basin, leaving millions displaced and the heartland in ruins. The disaster underscores the fragility of our systems and the urgent need for innovation, resilience, and vigilance.
As communities embark on the long road to recovery, one truth is clear: we must redesign our world to prevent such catastrophic chain reactions from ever happening again. The lessons of this tragedy must shape the future, ensuring that our civilization does not crumble under the weight of its own complexity.
That’s Good, Keep Going! ????
Nano-surface modification of ordinary Portland cement (OPC) with an organo-metallic titanium allows for compatibilization with most of earth’s materials – even oil-soaked seawater sand.
See link: https://4kenrich.com/wp-content/uploads/2019/04/A-New-1.5-Nanometer-Titanium-Treated-Portland-Cement-4-pg-Paper-by-Salvatore-J.-Monte-TechConnect-March-2019.pdf .
See link: https://7998076a.flowpaper.com/SPEPEMagazineJulyAug22web/#page=44 .
Salvatore J. Monte, President of Kenrich Petrochemicals, Inc.; Bachelor Civil Engineering-Structures, Manhattan College; M.S.-Polymeric Materials, NYU Tandon School of Engineering; Member Plastics Hall of Fame 2021-the Plastics Academy; Society Plastics Engineers Fellow & Honored Service Member; Licensed P.E.; S&E Innovative Technologies, LLC – Principal Member; Plastics Industry Association Recycle Subcommittee-Compatibilizers; Board of Governors, Plastics Pioneers Association-MTS Newsletter Chair; 33-U.S. Patents filed worldwide; Lectured Worldwide on Titanate & Zirconate Coupling agents; ~500-American Chemical Society CAS Abstracts of published “Works by S.J. Monte” – including a 340-page Reference Manual; Classified Top Secret for Solid Rocket Fuel and Energetic Composites Patents for the Insensitive Munitions Program; Lifetime member of the National Defense Industrial Association; Lifetime Member of the BOD-SPE ThermoPlastics Materials & Foams Division – Annual Scholarship named: Salvatore J. Monte Thermoplastic Materials & Foams Division Scholarship; External Advisory Committee-UCF NanoScience Technology Center; former Chairman of the NYRG-ACS Rubber Division; former President of the SPE P-NJ Section; Testified several times before Congress on Trade and IP Protection; Business Man of the Year 2015-Bayonne Chamber of Commerce; Federated Society Coatings Technology C. Homer Flynn Award for Technical Excellence; Recipient of the Albert Nelson Marquis Lifetime Achievement Award; Rotary Paul Harris Fellow; UA Million Miler; Member PIA, ACMA, SPE, ACS, ACS Rubber Division, ASCE, AIChE, SAMPE, the GRAPHENE COUNCIL, the Vinyl Sustainability Council.