303.666.4133

Extreme Graphene and the Coming Super Materials Gold Rush

by | Oct 27, 2014 | Business Trends

Thomas Frey Futurist speaker extreme graphene and the coming super-materials gold rush

In 2004, scientists Andre Geim and Kostya Novoselov from the University of Manchester, used adhesive tape to lift a thin layer of carbon from a block of graphite, and placed it on a silicone wafer. Graphite is the stuff commonly found in pencil lead.

As simple as this sounds, what these two scientists had created was a 2-dimensional form of carbon known as graphene, and in 2010 they received the Nobel Prize in Physics for this discovery. But that’s only part of the story.

What makes the discovery of graphene so important is all of its unusual properties. It is a pure form of carbon that is very thin, very strong and very expensive.

  • SUPER THIN – It is only one atom thick, so it is almost transparent.
  • SUPER STRONG – Graphene is the strongest material ever discovered, 100 times stronger than diamond, and 200 times stronger than steel, and yet flexible and even stretchable.
  • SUPER CONDUCTOR – It conducts heat and electricity faster at room temperature than any other known material. It also charges and discharges electrically up to 1000x faster than traditional batteries.
  • SUPER EXPENSIVE – Even using the most advanced processes for manufacturing it, graphene still runs around about $100,000 per square meter.

These unusual attributes have made graphene the most exciting new material in all of science.

Since its discovery, a total of 8,413 patents were granted by February 2013 in areas such as super computing, electronics, energy storage, telecommunications, renewable power, health care, and telecommunications.

Over the coming years, the price of graphene will go through an exponential price drop similar to Moore’s Law.

Here’s why graphene and a host of other super materials are turning material science into the hottest of all hot new fields of research.

Thomas Frey Futurist speaker Dr. Bor Jang – Grandfather of Graphene
Dr. Bor Jang – Grandfather of Graphene

Dr. Bor Jang – The Real Grandfather of Graphene 

Nobel laureate Andre Geim was once asked why he never patented graphene. His answer was that a tech company executive told him that in a few years, big companies would hold so many graphene patents that he’d spend a fortune suing them.

Little did he know that a patent was filed on graphene a full 2 years before his so-called breakthrough discovery. US patent number 7071258, titled “Nano-scaled graphene plates” was filed in October 2002 by Dr. Bor Jang, founder of Angstron Materials, and Dr. Wen Huang, researcher at Nanotek Instruments, a company that was also founded by Dr. Jang. Both are in Akron, Ohio.

Dr. Bor Jang is an extremely rare scientific talent who had done tons of work on graphene long before the rest of academia discovered it. He currently holds over 40 patents on graphene-related applications and that number continues to grow.

One shortcoming though, Dr. Jang almost never publishes scientific papers, making him virtually unknown in academia. So did the Nobel Committee award the prize to the wrong people? In a word – yes. This was a serious oversight by the Nobel Foundation for not searching patent activity first.

Thomas Frey Futurist speaker The structure of graphene resembles chicken wire

The structure of graphene resembles chicken wire

Extreme Graphene

The Wikipedia entry for “graphene” is over three times longer than the entry for “steel.” It also has over three times as many references. Even though graphene is made from carbon, its unusual properties and distinctive attributes have required a mountain of research, and this, in turn, requires a mountain of explanation.

It’s these distinctive attributes that make it valuable in so many different industries.

Here are ten examples:

1. Super Capacitors – Angstron Material’s 2010 patent for graphene-based super capacitors has been receiving lots of attention. Dr. Bor Jang explains, “This type of supercapacitor is especially attractive for electric vehicle where the pairing of supercapacitors with fuel cells or batteries could provide a hybrid system capable of delivering high power acceleration and energy recovery during braking.”

2. Energy Storage – Dr. Bor Jang’s super capacitor patents may also hold the keys to our coming energy storage revolution. Researchers at Korea’s Gwangju Institute of Science and Technology have already demonstrated graphene-based super capacitors that can charge 100% in just 16 seconds and repeat the charge-discharge cycle over 10,000 times without a significant reduction in capacitance. This could translate into charging your phone in 30 seconds, or your electric car in a few minutes.

3. Wireless Power – Battelle’s February 2013 patent on using graphene to develop a more efficient Tesla Coil, where the graphene would wrap around the wires of the coil to act as protection against unwanted eddy currents, makes these coils far more suitable for wireless power transmission. Nikola Tesla’s dream of wireless power is still alive and well, living inside the power of graphene.

4. Super Sensitive Touch Screen – Samsung’s March 2014 patent describes using graphene to give all touch screens the ability to differentiate between weak and strong touch.

5. Ultra Thin Batteries – Apple’s June 2013 thin battery patent is focused on using graphene as a heat sink in batteries. In order to adequately cool a battery, a graphite coating is normally 30 millimeters thick. The graphene heat sink drops it to less than one.

6. Controlling Epileptic Seizures – Neurologists at the University of Washington have determined that cooling the brain by 1.2 degrees Celsius will inhibit epileptic seizures. Cooling is achieved by replacing a small piece of the thermally insulating human skull with thermally conductive graphene, allowing heat to flow from the brain to the cooler scalp. This technique has been demonstrated to prevent seizures before they occur.

7. Instant Deicing of Aircraft – In a February 2013 patent, Saab describes how to apply a graphene layer to aircraft wings to remove ice from the wings during cold weather, and eliminate the need for the ‘chemical spray’ used today.

8. Nano-Scale Transistors – A January 2013 patent by IBM explains how they’ve manage to mitigate many of the challenges of nano-scale electronics by removing the parasitic capacitance and resistance through a simple reengineering of the geometry of the transistor with graphene.

9. Thermo-Conductive Lubricants – A November 2012 patent by Angstron Materials describes dispersing single-layer nano graphene platelets in oil to provide improved thermal conductivity and reduce friction. In addition, it offers viscosity stabilization, and thermal conductivity values are the highest ever recorded for fluid materials.

10. Highly Efficient Water Filtration and Desalinization – Water and graphene have an unusual relationship. Water can pass through it, but almost nothing else can. Aluminum-oxide, currently used in many water filtration applications, becomes instantly outdated by graphene’s strength and rigidity. Researchers at Lockheed claim a graphene filter will reduce energy costs of reverse osmosis desalination by 99%.

thomas-frey-futurist-speaker-graphene-7

Aerogels are often referred to as “frozen smoke”

The Coming Age of Super Materials

You may not think its possible to conjure up some imaginary substance and create it on a computer, but that’s exactly what’s happening in the world of material science. Some of the newest materials getting scientists excited still only exist in theory. The next giant step will then be to actually start producing them.

Others already exist but are so new that their true range of application are still little more than conjecture in the minds of those developing them.

That said, we are about to embark on the golden age of material science with digitally modeled materials being fabricated and used in thousands of experimental applications before landing on their primary uses in the business arena.

Here are just a few showing earth-rattling potential:

  • Aerogels are a synthetic porous ultralight material created with a process that replaces the liquid component of a gel with gas. The result is solid matter, typically carbon, but with extremely low density and low thermal conductivity. Sometimes researchers refer to it as “frozen smoke.” Its current uses include insulation for skylights, chemical absorber for cleaning up spills, thickening agents in some paints and cosmetics, drug delivery agents, and water purification. But we are only scratching the surface of the thousands of other uses still to come.
  • Stanene (two-dimensional tin sheets) may be the next super material that competes with graphene. Even though it’s still only a theoretical substance that’s never actually been produced, it has lots of the thought leaders in material science world buzzing.
  • Shrilk is a material made from leftover shrimp shells and proteins derived from silk. Its dissolve-over-time biodegradable attributes will allow it to serve as sutures or scaffolds for growing new tissues that disappear when they are no longer needed.
  • Biomimetic nanomaterials are just now coming online. As an example, lotus leaves that are resistant to wetting and dirt due to their nanostructured surface are being used to develop waterproof paints and textiles.
  • Growable metals are still only in the backroom laboratory stage, but speculation has them being developed by adding metal salts to the irrigation water in plants, and using a secret process to sort the metals from the organic matter.
  • Spider silk is made from a biopolymer called an aquamelt, which can be spun at room temperature 1,000 times more efficiently than plastics. While spider silk itself will probably never be used, researchers are looking to make other materials that mimic spider silk’s tricks.
  • Carbon nanotubes are members of the fullerene structural family. Being carbon-based like graphene, carbon nanotubes compete on many levels with graphene in areas such as strength, conductivity, and stiffness. Even though the first paper describing carbon nanotubes appeared in 1991, no one has yet cracked the code for producing long strands inexpensively.

Thomas Frey Futurist speaker Graphene aerogel
Graphene aerogel, the lightest substance on earth, weighing only 0.16 milligrams per cubic centimeter, resting on a flower

Final Thoughts

Graphene is strong, stiff and extremely light. Those who immerse themselves in its properties have their mind racing with possibilities.

One example has it being used to create bulletproof skin that instantly transforms the body into “cloaking mode” where wearers suddenly go invisible whenever signs of trouble appear.

It could eventually replace steel and carbon composites in everything from aircraft, to bicycles, to ships, to armored vehicles in the military.

Using graphene, thinly layered across surface areas, with its high electrical conductivity, thinness and strength, it could lead to fast and efficient bioelectric sensory devices, with the ability to monitor everything from glucose levels, to hemoglobin levels, to cholesterol, and even DNA sequencing.

The possibilities seem endless.

But graphene is just one piece of a much larger puzzle being constructed in the coming era of super-materials. These materials are a result of a convergence of our ever-increasing connectedness, infinite computing, artificial intelligence, 3D printing, and a few technologies that still defy adequate description.

If you think this is cutting edge stuff, better brace yourself for what comes next. The genie has left the bottle, and next-gen super materials are poised to be a key ingredient in virtually all forms of innovation from here on out.

Translate This Page

Extreme Graphene and the Coming Super Materials Gold Rush

by | Oct 27, 2014 | Business Trends

I was thoroughly intrigued when I found out the Colorado School of Mines in Golden, Colorado was offering a degree in asteroid mining.

Yes, the idea of extracting water, oxygen, minerals, and metals from an asteroid sounds like science fiction to most people, but it’s not that far away.  In fact, Colorado School of Mines’ newly launched “Space Resources” program will help people get in on the ground floor.

After thinking about the proactive nature of this approach, it became abundantly clear how backward thinking most colleges have become.

When colleges decide on a new degree program, they must first recruit instructors, create a new curriculum, and attract students. As a result, the talent churned out of these newly minted programs is the product of a 6-7 year pipeline.

For this reason, anticipatory-thinking institutions really need to be setting their sights on what business and industries will need 7-10 years from now.

The Risk-Averse Nature of Education

When Harvard professor Clayton M. Christensen released his best-selling book, The Innovator’s Dilemma, his core message that disruptive change is the path to success, was only partially embraced by higher education.

While many were experimenting with MOOCs and smart whiteboards, changes in the subject matter of their courses still evolved at the traditional pace of discovery.

This is not to say colleges are not innovative. Rather, the demands of today’s emerging tech environment are forcing business and industries to shift into an entirely new gear. And that most definitely includes our academic institutions.

From a management perspective, it’s far easier to oversee a contained system where all variables are constrained. But during times of change, we tend to give far more power to the “unleashers,” who are determined to test the status quo and release ideas and trial balloons to see what works.

For this reason, managers and creatives often find themselves on opposing sides, and the winners of these warring factions often determine what we as consumers see as the resulting ripples of change.

Offering Pilot Programs

When Facebook bought Oculus Rift in March 2014 for $2 billion, the job boards went crazy, as there was an instant uptick in the demand for VR designers, engineers, and experience creators. But no one was teaching VR, and certainly not the Oculus Rift version of it.

Colleges have a long history of being blindsided by new technologies:

  • When eBay launched, no one was teaching ecommerce strategies
  • When Myspace launched, no one was teaching social networking
  • When Google launched, no one was teaching online search engine strategies
  • When Uber launched, no one was teaching sharing economy business models
  • When Apple first opened their App Store, no one was teaching smart phone app design
  • When Amazon first allowed online storefronts, no one was teaching the Amazon business model
  • When YouTube first offered ways to monetize videos, no one was teaching it

Since most academic institutions are only willing to put their name on programs with long-term viability, the endorsement of half-baked agendas does not come easy. However, that is exactly what needs to be done.

Colleges can no longer afford to remain comfortably behind the curve.

52 Future College Degrees

As a way of priming your thinking on this matter, here are 52 future degrees that forward-thinking colleges could start offering today:

  1. Space Exploration – space tourism planning and management
  2. Space Exploration – planetary colony design and operation
  3.  Space Exploration – next generation space infrastructure
  4. Space Exploration – advanced cosmology and non-earth human habitats
  5. Bioengineering with CRISPR – policy and procedural strategies
  6. Bioengineering with CRISPR – advanced genetic engineering systems
  7. Bioengineering with CRISPR – operational implementations and system engineering
  8. Bioengineering with CRISPR – ethical regulation and oversight
  9. Smart City – autonomous traffic integration
  10. Smart City – mixed reality modeling
  11. Smart City – autonomous construction integration
  12. Smart City – next generation municipal planning and strategy
  13. Autonomous Agriculture – robotic systems
  14. Autonomous Agriculture – drone systems
  15. Autonomous Agriculture – supply chain management
  16. Autonomous Agriculture – systems theory and integration
  17. Swarmbot – design, theory, and management
  18. Swarmbot – system engineering and oversight
  19. Swarmbot – municipal system design
  20. Swarmbot – law enforcement and advanced criminology systems
  21. Cryptocurrency – digital coin economics
  22. Cryptocurrency – crypto-banking system design
  23. Cryptocurrency – regulatory systems and oversight
  24. Cryptocurrency – forensic accounting strategies
  25. Blockchain – design, systems, and applications
  26. Blockchain – blockchain for biological systems
  27. Blockchain – large-scale integration structures
  28. Blockchain – municipal system design strategies
  29. Global Systems – system planning, architecture, and design
  30. Global Systems – large-scale integration strategies
  31. Global Systems – operational systems checks and balance
  32. Global Systems – governmental systems in a borderless digital world
  33. Unmanned Aerial Vehicle - drone film making
  34. Unmanned Aerial Vehicle – command center operations
  35. Unmanned Aerial Vehicle – municipal modeling and planning systems
  36. Unmanned Aerial Vehicle – emergency response systems
  37. Mixed Reality - experiential retail
  38. Mixed Reality – three-dimensional storytelling
  39. Mixed Reality – game design
  40. Mixed Reality – therapeutic systems and design
  41. Advanced Reproductive Systems – designer baby strategies, planning, and ethics
  42. Advanced Reproductive Systems – surrogate parenting policy and approaches
  43. Advanced Reproductive Systems – organic nano structures
  44. Advanced Reproductive Systems – clone engineering and advanced processes
  45. Artificial Intelligence – data management in an AI environment
  46. Artificial Intelligence – advanced human-AI integration
  47. Artificial Intelligence – streaming AI data services
  48. Artificial Intelligence – advanced marketing with AI
  49. Quantum Computing – data strategies in a quantum-connected world
  50. Quantum Computing – quantum-level encryption and security
  51. Quantum Computing – quantum computing implementation strategies
  52. Quantum Computing – AI-quantum system integration

Final Thought

More so than any time in history, we have a clear view of next generation technologies. Naturally, we’re still a long way from 100% clarity, but for most of the technologies listed above, the shifting tectonic plates of change can be felt around the world.

Without taking decisive action, colleges run the risk of being circumvented by new types of training systems that can meet market demands in a fraction of the time it takes traditional academia to react.

The ideas I’ve listed are a tiny fraction of what’s possible when it comes to emerging tech degrees. Should colleges stick their neck out like Colorado School of Mines and offer degrees that may not be immediately useful? Adding to that question, how many college degrees are immediately useful today?

I’d love to hear your thoughts on this topic.

Translate This Page